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Degeneracy algorithm for random magnets

S. Bastea*
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University,

East Lansing, Michigan 48824-1116
~Received 20 July 1998!

It has been known for a long time that the ground-state problem of random magnets, e.g., the random field
Ising model, can be mapped onto the maximum flow, minimum cut problem of transportation networks. We
build on this approach, relying on the concept of residual graph, and design an algorithm that we prove to be
exact for finding all the minimum cuts, i.e., the ground-state degeneracy of these systems. We demonstrate that
this algorithm is also relevant for the study of the ground-state properties of the dilute Ising antiferromagnet in
a constant field and interfaces in random bond magnets.@S1063-651X~98!07812-X#

PACS number~s!: 02.70.2c, 75.10.Hk, 02.60.Pn, 02.10.Eb
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I. INTRODUCTION

The statistical physics of random and frustrated syste
has received a considerable deal of attention in recent y
@1#. The presence of quenched disorder has been foun
greatly change the bulk and interface properties of a var
of systems as compared to their ‘‘pure’’ counterparts, le
ing to different and very interesting equilibrium and no
equilibrium phenomena. Unfortunately, the progress
been many times rather slow, primarily because random
tems pose sometimes insurmountable theoretical difficu
even to the most stubborn theorists. Computer simulati
have played and continue to play an important role in
field, being at times the only guide through a very comp
cated energy landscape. While the traditional Monte Ca
method@2# proved its usefulness again and again, it was s
realized that other approaches should be considered, dep
ing on the nature of the problem at hand. Since then a var
of algorithms, previously known only within the comput
science community, have been successfully brought to b
on numerous statistical mechanics problems with quenc
disorder, from spin glasses@3# to rigidity percolation@4#.
Such algorithms, generally known as combinatorial optim
zation algorithms, have been typically used to find the ex
T50 ground states of the system being studied, comple
avoiding the equilibration problems specific to the Mon
Carlo simulations.

In the following I will focus on a single class of suc
algorithms, network flow algorithms, that have been put
the limelight by the work of Ogielski@5#, who applied them
to the study of the random field Ising model~RFIM!. Since
then the same method was also successfully applied to
study of equilibrium interfaces in disordered systems@6,7#,
becoming an important tool for the physicists working in t
field. The method is generally based upon mapping the
tem being studied onto a network of capacities throu
which an incompressible fluid obeying local mass conser
tion flows. The problem of finding the ground state turns o
to be equivalent to finding the maximum flow that can
pushed through the network between two special nodes

*Electronic address: bastea@pa.msu.edu
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source and the sink, the so-called maximum flow, minim
cut problem of operations research@8–10#. The advantage of
this approach is that polynomial time algorithms have be
developed for this problem@9–11#, some of which are much
older than the field of random systems.

One of the problems that was usually not addressed u
these algorithms and an important problem in the physics
random systems is the degeneracy of theT50 ground states.
In terms of the associated network flow problem this is
question of minimum cut degeneracy. An approximate al
rithm dealing with this issue was proposed in@12# and ap-
plied to the RFIM problem. In this paper I build on th
maximum flow, minimum cut approach, relying strongly o
the concept of residual graph@11#, and design an exact algo
rithm for finding all the minimum cuts~or, equivalently, all
the ground states for a certain class of systems!.

The organization of the paper is the following. For th
sake of completeness Sec. II introduces the mapping of
ground-state problem to the maximum flow, minimum c
problem along with the network flow terminology and tw
combinatorial results that will be used in the design of t
algorithm. Section III describes the degeneracy algorith
Section IV presents a number of applications of the al
rithm. Section V gives a brief conclusion. The Append
includes the proofs to Propositions 1–4.

II. GROUND STATES USING MAXIMUM FLOW,
MINIMUM CUT ALGORITHMS

In the following I will present the mapping of the ground
state problem to the maximum flow, minimum cut proble
and then proceed to describe what kind of information o
can extract from this mapping. I will use theT50 interface
problem in the random bond Ising ferromagnet to illustra
the method because it is somewhat easier for the unfam
reader to understand it intuitively~see also@13# for a re-
view!.

The Hamiltonian of the system is

H52(̂
i j &

Ji j s is j , ~1!
7978 © 1998 The American Physical Society
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PRE 58 7979DEGENERACY ALGORITHM FOR RANDOM MAGNETS
wheres i561 andJi j >0 are ferromagnetic couplings be
tween neighboring spins.Ji j are fixed independent ident
cally distributed random variables: quenched randomnes
the system is ad-dimensional cube, an interface with dime
sion d21 can be induced by using periodic boundary co
ditions along thed21 directions and setting the spins in th
two (d21)-dimensional hyperplanes that represent
boundaries of the system along the last direction to11 and
21, respectively. The interface that will form in the syste
between the11 and 21 hyperplanes will generally be
rough because it will wander in order to break the weak
bonds. The energy is a minimum over all the possible s
configurations~with the61 boundary spins fixed! and there-
fore the problem of finding the minimum energy configur
tion~s! would appear to be computationally very hard, ev
for small system sizes. As it turns out, this is not the cas
one takes advantage of the similarity between this prob
and the maximum flow, minimum cut problem, very we
known in the study of transportation networks@8–10#. The
idea is the following. Two new extra sites are introduced
source nodes that is connected to all the spins of the11
hyperplane and a sink nodet connected to all the spins of th
21 hyperplane. The ferromagnetic constants coupling
source nodess and the sink nodes t to their corresponding
hyperplane are chosen to be strong enough so they are
broken in the ground state. Then, by settingss511 and
s t521 an interface is induced as before. Now we view t
system, includings and t, as a graph whose arcs are t
bonds between the spins. The arcs have forward and b
ward capacities equal to the corresponding coupling c
stantsci j 5cji 5Ji j , or we can imagine that the nodesi andj
are connected by both forward and backward arcs with
pacitiesci j and cji , so this is a directed graph.~The con-
straint thatci j 5cji is dictated by the physics and is not sp
cific to the general maximum flow, minimum cut problem.
can be relaxed for the interface problem, but not for
random field problem.! We define the set of nodes asN and
a partition (X,Y) of the nodes as

X[$ i PNus i511%, ~2!

Y[$ i PNus i521%. ~3!

ThenXøY5N, XùY5B, sPX, andtPY. The knowledge
of such a partition determines the energy of the spin confi
ration and the position of the interface. This is readily see
we write the Hamiltonian of the system as

H52 (
~ i , j !PA~X!

Ji j 2 (
~ i , j !PA~Y!

Ji j 1 (
~ i , j !PA~X,Y!

Ji j

5H012 (
~ i , j !PA~X,Y!

Ji j , ~4!

where H0 is the energy of the fully aligned system,H0
5( ( i , j )Ji j , and we defined A(X)[$( i , j )u i PX, j PX%,
A(Y)[$( i , j )u i PY, j PY%, and A(X,Y)[$( i , j )u i PX, j
PY%. Thus the problem of finding the ground-state interfa
which has minimum energy, is equivalent to finding a pa
tion (X,Y), also called a cut, that minimizes( ( i , j )PA(X,Y)Ji j ,
minimum cut. ~Note thatH0 is a constant for a given random
sample.! If we imagine fluid flowing through the networ
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from the sources to the sink t, the minimum cuts are the
bottlenecks of the network of capacities because they de
mine the maximum flow that can be pushed through the n
work from s to t. It is useful at this point to put the problem
in a more general setting. For this a number of definitions
in order.

A transportation networkis a directed graphGc(N,A)
with two special nodes:s the source andt the sink or target;
N is the set of nodes andA the set of arcs. The directed ar
( i j ) going from nodei to j has capacityci j >0. @For the sake
of clarity we assume that if the arc (i j ) exists and has ca
pacity ci j .0 then (j i ) also exists and has capacitycji >0.#
A flow through the networkGc(N,A) is a set of numbers
$ f i j %, each corresponding to an arc inA, subject to the fea-
sibility constraints

0< f i j <ci j ~capacity constraint!, ~5!

ei5 (
$ j u~ j i !PA%

f j i 2 (
$ j u~ i j !PA%

f i j 50

~ local flow conservation! ~6!

for all the nodesj PN2$s,t% and

2es5et5 f , ~7!

where f is called the value of the flow.~Note that2es5et
follows from the flow conservation@9#.! The maximum flow
problemof network flows is concerned with finding the flow
$ f i j % through the transportation networkGc that has maxi-
mum valuef.

For any feasible flow through the network we define t
residual graphas the graphGf(N,A) with positive residual
capacitiesof the arcs,

r i j 5ci j 2 f i j 1 f j i .0, ~8!

where f i j 2 f j i is the net flow fromi to j. ~Note thatr i j >0
follows from the capacity constraint and also that it is po
sible thatci j 50 and r i j .0 when cji .0.) An augmenting
path is a directed path froms to t in the residual graphGf .

A cut is a partition of the nodes setN into two subsetsX
and Y, denoted by (X,Y), with sPX and tPY, such that
XøY5N andXùY5B. Thecapacity of a cutis defined as

c~X,Y!5 (
$~ i j !PAu i PX, j PY%

ci j . ~9!

In the following I will concentrate on the case of a tran
portation networkGc(N,A) in which if the arc (i j ) exists
and has capacityci j .0 then the arc (j i ) also exists and has
capacitycji .0. This kind of network is the most relevan
one in the physics applications that I described before.
these networks the following two propositions can be prov
~the proofs are contained in the Appendix!, which can be
used to design an algorithm that finds all the minimum c
in the networkGc(N,A).

Proposition 1. If $ f i j % is a maximal flow and (X,Y) a
minimum cut thenr i j 50 for all arcs$( i j )PAu i PX, j PY%.
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7980 PRE 58S. BASTEA
Proposition 2.If f max.0 a cut (X,Y) in Gc is a minimum
cut if and only if it is a directed partition inGf

max, the re-
sidual graph for a maximal flow.

The calculation of an actual maximal flow through t
network can be done using polynomial time algorithms. T
first such algorithm, theaugmenting path algorithm@9#, was
proposed originally by Ford and Fulkerson and it is also
way to prove the maximum flow, minimum cut theorem~see
the Appendix!. However, much faster algorithms have be
developed in recent years, in particular push-relabel meth
with global updates, that allow one to deal with much bigg
systems than before@10#. These algorithms can be and ha
been used in such a way as to improve the computatio
speed by providing only the value of the maximal flow and
minimum cut, but not an actual maximal flow through t
network@11#. However, the knowledge of an actual maxim
ni
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flow through the network is crucial for finding all the min
mum cuts. Fortunately, such a calculation can be made w
out a major loss of speed@11#.

III. DEGENERACY ALGORITHM

In the following I will use Propositions 1 and 2 to desig
an algorithm that finds all the minimum cuts. The algorith
will be aimed at finding the set of arcs$( i j )PAu i PX, j
PY for all minimum cuts (X,Y)%, denoted hereinafter by
Amc , and a procedure for determining the actual minimu
cuts.

Let us assume that we constructed a maximal flow$ f i j
max%

through the networkGc(N,A) using an appropriate algo
rithm and letGf

max be the associated residual graph. We ha
the definition
Yt[$all nodes that can reach the sink along a directed path inGf
max%, ~10!

Xt5N2Yt . ~11!

Then (Xt ,Yt) is a minimum cut that we will call theT cut ~this follows from Proposition 2!. This minimum cut has the
property that for any other minimum cut (X,Y), YùYt5Yt . @Proof. Let us assumeYùYt5Y1ÞYt ; thenX15Yt2Y1,X.
Because (X,Y) is a directed cut~Proposition 2!, for any nodei PX there is no directed path fromi to the sinkt in Gf

max, which
must also be true for anyi PX1 . However,X1,Yt , so this is a contradiction.# We have also the definition

Xs[$all nodes that can be reached from the source along a directed path inGf
max%, ~12!

Ys5N2Xs . ~13!
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Then (Xs ,Ys) is also a minimum cut that we call theS cut.
This minimum cut has the property that for any other mi
mum cut (X,Y), XùXs5Xs . Now we define

Z5N2Xs2Yt. ~14!

Then if Z5B a single minimum cut exists; otherwise the
are at least two. We will be concerned with the nontriv
caseZÞB.

At this point our knowledge ofAmc is summarized in Fig.
1. The arrows stand for possibly more than one arc
G(N,A) and all these arcs are included inAmc . @Note that
these arcs are saturated by the flow, that isr i j 50, so inGf

max

only the arcs (j i ) are present.# By the construction ofZ we
also know that all the remaining arcs that make upAmc
connect nodes that are included inZ.

The first part of the algorithm is aimed at finding th
disconnected pieces~clusters! that make upZ and is there-
fore calledcluster counting. A look at Fig. 4, which is an
application of the algorithm to the bimodal RFIM, clarifie
the significance of this step. The idea is to determine
connectivity of Z in Gf

max using as connectivity rule (r i j

Þ0 or r j i Þ0), which is equivalent to (ci j Þ0 or cji Þ0.)
This procedure does not reveal any new arcs ofAmc , but
shows how the minimum cuts are constructed using the
of Amc that we know at this moment. The well know
Hoshen-Kopelman algorithm@14#, which is an efficient clus-
-

l

f

e

cs

ter labeling procedure, can be readily adapted for the clu
counting task and allows such a calculation to be made
time proportional to the number of nodes inZ @15#. Figure 2
summarizes our knowledge of the minimum cuts after t
step. It is easy to see that the number of minimum cuts
we can construct at this time is 2n(Z), where n(Z) is the
number of independent clusters making upZ. Our search for
the remaining minimum cuts is then reduced to finding

FIG. 1. Simplified representation of the network after the fi
step of the algorithm, showing theScut, theT cut, andZ ~we denote
Xs by S andYt by T; see text!. Note that a directed arc connectin
S andT may or may not exist.
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minimum cuts in each of the independent clusters. Iff max
50 the algorithm can be stopped here as everything
known about the minimum cuts. Any partition of then(Z)
clusters is a minimum cut and the total number of minimu
cuts is 2n(Z). ~Note that if f max.0 the ‘‘zero’’ step of the
algorithm should be to find the cluster percolating froms to
t with the above connectivity rule. All the other clusters co
tribute in a trivial manner to the minimum cuts; therefore,
the following we assume that they have been already
carded.!

In the second part of the algorithm we perform asubclus-
ter countingprocedure on each of the independent clust

FIG. 2. Simplified representation of the network after the cl
ters making upZ have been identified and an example of a mi
mum cut.
is

-

s-

s

found at the first step. The connectivity rule that we use
(r i j Þ0 and r j i Þ0.) It is clear, using Proposition 1, that th
subclusters so obtained can only be on one side or the o
of a minimum cut, i.e., the setAmc is included in the set of
arcs that connect these subclusters to one another~we for-
mally call Xs and Yt subclusters!. In order to eliminate the
overcounting, we apply a third procedure calledsubcluster
coagulation.

At the end of the second step of the algorithm the s

-

FIG. 3. SupergraphG(N,A) at the end of the algorithm and a
example of a minimum cut.
e

ins
f-

or
’’
FIG. 4. ~Color! Ground-state structure of th
bimodal RFIM for h/J53/2. The spins frozen
‘‘up’’ are green, the spins frozen ‘‘down’’ are
white, and the other colors represent the sp
making upZ; neighboring subclusters have di
ferent colors~see the text!. Note thatZ is made
up of independent clusters that contain one
more subclusters. A dot indicates a field ‘‘up
and the absence of it indicates a field ‘‘down.’’
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FIG. 5. ~Color! Ground-state structure of th
DAFF for h/J57/2 andp50.9. The color coding
is the same as for the RFIM, only now blac
indicates an empty~‘‘nonmagnetic’’! site. Note
that in this case ‘‘flipping’’ a~sub!cluster means
coloring it with one or the other of the checkere
patterns.
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clusters are connected with each other possibly through m
tiple arcs withr i j 50 andr j i .0. Thesubcluster coagulation
procedure is applied iteratively on each of the independ
clusters and consists of the coagulation of subclusters
make up a directed cycle. A directed cycle is an orde
sequence of subclustersS1 , S2 , . . . ,Sm , such that for all
Sk , k51, . . . ,m, i k , j k nodes exist,i k , j kPSk , not neces-
sarily all distinct, with the property thatr i kj k11

50 and

r j k11i k
.0, whereSm11[S1 . The idea is that, according t

Proposition 2, subclusters making up such a directed c
cannot be on different parts of a minimum cut; therefore,
arcs connecting them are not included inAmc ~see also the
discussion following Proposition 4!. A Hoshen-Kopelman–
type algorithm, in which the subcluster coagulation
achieved through relabeling of the subclusters, is again ra
efficient at handling this task, but managing the data str
ture requires rather intricate coding.

At the end of the algorithm we have constructed a sup
graph like the one in Fig. 3, which we denote byG(N,A),
with single directed arcs and no cycles. The nodes are
the subclusters and the arcs stand, as before, for pos
more than one arc ofG(N,A). Formally, the arc (IJ) going
from the subclusterI to subclusterJ is defined by

~ IJ !5$~ i j !PAu i PI , j PJ% ~15!

and by the construction of the algorithmr i j 50 and r j i .0
for all arcs (i j )P(IJ). Then we defineAsg5øA(IJ), the
set of arcs ofG(N,A) represented by the arcs ofG(N,A).
The following proposition is then true~see the Appendix for
the proof!.

Proposition 3.At the end of the algorithmAsg5Amc .
When the algorithm terminatesAmc is known and, more-

over, the problem of counting the minimum cuts is reduc
to finding all the directed partitions in a directed, mu
l-

nt
at
d
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e
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w
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d
FIG. 6. ~Color! RFIM cluster from Fig. 4 and its subcluste

graph representation;R stands for red,Y for yellow, andB for blue.
The associated degeneracy is 7.
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FIG. 7. ~Color! Interface con-
figuration for the bond-diluted
Ising model at p50.64. The
spins frozen up are green, th
spins frozen down are gray, an
the pieces that are not part of th
percolating cluster~see the text!
are white. The other colors rep
resent again the spins making u
Z, with neighboring subclusters
having different colors. Note tha
for this particular sampleZ is
made up of six independent clus
ters.

FIG. 8. ~Color! Different
sample from Fig. 7, which has
three independent interfaces
each with its own excitations
Note that Z is in this case a
single cluster in the algorithm
denomination.



.
e

te

y
f

nt
o

e
ld
x
b
i
c

at
at
s
e
a

t o

e
e

Th

wn

o
si
s

.
’
pe
ew
w
u

th
e

up’’
the
two

nse
his
ntly

-

and

its
thm

he
lus-

d-
il-

rs
t of
ul-
se
ed

ds
ut
m
d-

ing
in

cal
ms
e.
n

hat
um
ial
lic
ter-

ns
g

7984 PRE 58S. BASTEA
smaller supergraphG(N,A) with single arcs and no cycles
Simple enumeration is therefore feasible if the independ
clusters are not too big. The degeneracy~total number of
minimum cuts! D can be written as

D5)
i

d~ i !, ~16!

where d( i ) is the degeneracy associated with clus
i , d( i )>2.

One additional result can be proved~the proof is con-
tained in the Appendix!, which was also probably known b
Ford and Fulkerson@8#, that further clarifies the meaning o
Amc .

Proposition 4.Amc is the set of arcs ofG(N,A) that will
be saturated by all the maximal flows~the ‘‘weak’’ links of
the network!.

The above proposition makes it easier to understand i
itively the significance of the subcluster coagulation step
the algorithm. It is clear that the flows between subclust
are all saturating and also that the flow conservation ho
for each subcluster as a unit. Therefore, if for a certain ma
mal flow we identify a saturating flow cycle between su
clusters, we can reduce the flow around the cycle by
smallest value between two subclusters making up the cy
while keeping the overall flow maximal. This implies th
none of the arcs making up the cycle is necessarily satur
when the flow is maximal; therefore, according to Propo
tion 4, they are not part ofAmc . Furthermore, because of th
way the subclusters have been constructed, none of the
connecting the subclusters making up the cycle is par
Amc , so the subclusters can be coagulated.

IV. APPLICATIONS

Our interest in designing a degeneracy algorithm aros
connection with our desire to study the ground-state prop
ties of random magnets. We first used the above algorithm
study the ground-state structure of the two-dimensional6h
RFIM, which we expected to have a large degeneracy.
Hamiltonian of the RFIM is

HRFIM52J(̂
i j &

s is j2(
i

his i . ~17!

J.0 and thehi ’s are independent random variables dra
from a symmetric distributionP(hi), with ^hi&50 and
^hi

2&1/25h. In the case of the6h RFIM the hi ’s are, with
equal probability,1h and2h. This problem is mapped ont
the network flow problem by connecting the sites with po
tive fields to the source and the ones with negative field
the sink through arcs with capacityh ~see, for example,@13#
for more details!.

The structure of a6h RFIM ground state is shown in Fig
4: two frozen ferromagnetic domains of ‘‘up’’ and ‘‘down’
spins and a number of isolated clusters that can be flip
~colored! independently of each other to generate n
ground states. There is also a degeneracy associated
flipping certain groups of subclusters inside a cluster. S
prisingly, domains that can be flipped without changing
energy exist even ifh/J is irrational. In this case they hav
nt
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zero field energy and the same exchange energy in the ‘‘
and ‘‘down’’ states and are located at the boundary of
frozen domains. The smallest such clusters have only
spins~see Fig. 4!. As a result of this structure the6h RFIM
has a strictly positive entropy for a range ofh/J and related
with it a new order parameter, the paramagnetic respo
associated with the orientation of the above domains. T
result may be relevant to universality issues that are curre
being debated@16,17#.

A similar structure is found for the dilute Ising antiferro
magnet in a constant field~DAFF! ~Fig. 5!, which is believed
to be the experimental realization of the RFIM:

HDAFF5J(
~ i j !

e ie js is j2h(
i

e is i . ~18!

J.0 ande i are quenched independent random variables
P(e i)5pd(e i21)1(12p)d(e i), 0,p<1. Detailed re-
sults are reported elsewhere@18#.

For the sake of clarity one of the clusters in Fig. 4 and
subcluster graphic representation as given by the algori
are shown in Fig. 6. The connections toXs and Yt are not
shown; any directed partition is a minimum cut. Note that t
arrows separating such a partition point from the up subc
ters to the down subclusters.

We also applied the algorithm to the study of the groun
state interfaces in the bond-diluted Ising model. The Ham
tonian is the one in Sec. II, withJi j beingJ.0 with prob-
ability p and 0 with probability 12p. The ground-state
structure is shown in Fig. 7, with neighboring subcluste
having different colors. These subclusters can be though
as the excitations of a single interface, as in Fig. 7, or m
tiple interfaces, as in Fig. 8. The size distribution of the
excitations is a power law. Detailed results will be report
elsewhere@19#.

V. CONCLUSION

In conclusion, we designed an exact algorithm that fin
all the arcs of a flow network that are part of a minimum c
and allows the effective construction of all the minimu
cuts. This algorithm is relevant for the study of the groun
state properties of the random field Ising model, dilute Is
antiferromagnet in a field, interface properties of certa
Ising models with bond or site disorder, and other physi
problems that can be mapped onto network flow proble
and where the ground state is expected to be degenerat

After this work was completed Bruce Hendrickso
brought to my attention the work of Ball and Provan@20#,
which contains the idea of constructing an acyclic graph t
can be viewed as a compact representation of all minim
cuts ~see also@21#!. The authors also present a polynom
algorithm for counting the directed cuts in a planar acyc
graph. It appears that these problems are of continuing in
est for the study of network reliability.
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APPENDIX

In the following we present the proofs of the Propositio
1–4 that were quoted in the main text. They rely in part
the maximum flow, minimum cut theorem of Ford and Fu
erson@8,9#, probably the most important result in netwo
flows.

Ford-Fulkerson Theorem.In a transportation network
Gc(N,A) the maximum value off over all flows $ f i j % is
equal to the minimum valuec(X,Y) over all cuts (X,Y).

Proposition 1. If $ f i j % is a maximal flow and (X,Y) a
minimum cut thenr i j 50 for all arcs$( i j )PAu i PX, j PY%.

Proof. Let $ f i j % be a maximal flow with value
f max and (X,Y) a minimum cut. We havef 5 f max
5($( i j )PAu i PX, j PY%( f i j 2 f j i ) by conservation of the flow@9#
and also f max5($( i j )PAu i PX, j PY%ci j by the Ford-Fulkerson
theorem. This immediately implies($( i j )PAu i PX, j PY%r i j 50
and becauser i j >0, Proposition 1 follows.

Proposition 2.If f max.0 a cut (X,Y) in Gc is a minimum
cut if and only if it is a directed partition inGf

max, the re-
sidual graph for a maximal flow.

Definition. A partition (X* ,Y* ) of the nodes
N, X* øY* 5N, X* ùY* 5B, is directed if the arcs con
nectingX* andY* all have the same direction, for exampl
going from Y* to X* , i.e., r i j 50 for all arcs $( i j )PAu i
PX* , j PY* % and '( j * i * )PA, i * PX* , j * PY* , r j* i*
.0.

Proof. If ( X,Y) is a minimum cut we have from Propos
tion 1 r i j 50 for all arcs$( i j )PAu i PX, j PY%. Now if we
also assumer j i 50 for all arcs$( j i )PAu i PX, j PY% this im-
plies ci j 5cji 50 for all arcs$( i j )PA,( j i )PAu i PX, j PY%
and further thatf max50 from the Ford-Fulkerson theorem
which is a contradiction. Thus the direct implication
proved.

Conversely, let us now assume that (X* ,Y* ) is a directed
partition in Gf

max, i.e., r i j 50 for all arcs$( i j )PAu i PX* , j
PY* % and '( j * i * )PA, i * PX* , j * PY* , r j* i* .0. In or-
r-
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der to prove that (X* ,Y* ) is a minimum cut we have to
prove first that (X* ,Y* ) is a cut, i.e.sPX* and tPY* . Let
us assume that this is not true. Then either~a! sPY* , t
PX* , ~b! sPX* , tPX* , or ~c! sPY* , tPY* . We will
show that all these lead to a contradiction.

~a! sPY* , tPX* . In this case (Y* ,X* ) is a cut and by
the conservation of the flow($( i j )PAu i PX* , j PY* %( f j i 2 f i j )
5 f max.0. However, r i j 50 implies f j i 2 f i j 52ci j , so
($( i j )PAu i PX* , j PY* %( f j i 2 f i j )52($( i j )u i PX* , j PY* %ci j <0, and
therefore is a contradiction.~In fact, the inequality is strict,
($( i j )u i PX* , j PY* %ci j .0, becausef max.0, andci j andcji are
simultaneously zero or strictly positive.!

~b! sPX* , tPX* . In this case the flow conservation im
plies that the net flow intoY* must be zero, i.e.,
($( i j )PAu i PX* , j PY* %( f i j 2 f j i )50. Therefore, ($( i j )PAu i PX* ,

j PY* %r i j 5($( i j )PAu i PX* , j PY* %ci j 50 and ($( i j )PAu i PX* ,

j PY* %r j i 5($( i j )PAu i PX* , j PY* %cji .0. As a result'( i j )PA
with ci j 50 andcji .0, which is a contradiction. Case~c! is
similar to ~b!. From all the above it follows thatsPX* and
tPY* , so (X* ,Y* ) is a cut.

Now we have to prove that (X* ,Y* ) is also a minimum
cut. We have($( i j )PAu i PX, j PY%r i j 50 and therefore

c~X,Y!5 (
$~ i j !PAu i PX, j PY%

ci j

5 (
$~ i j !PAu i PX, j PY%

~ f i j 2 f j i !5 f max ~A1!

by the conservation of the flow. This implies, according
the Ford-Fulkerson theorem, that (X,Y) is a minimum cut.

Proposition 3.At the end of the algorithmAsg5Amc .
Proof.Amc,Asg follows from the construction of the al

gorithm and Propositions 1 and 2. In order to pro
Asg,Amc let us assume, without any loss of generality, th
the supergraph has a single cluster~multiple clusters are in-
dependent of each other!. Let (IJ) be an arc ofG(N,A)
connecting subclustersI and J. ~We consider only the non
trivial case IÞYt and JÞXs ; if I 5Yt or J5Xs the result
follows immediately from the construction of theScut andT
cut.! We have the definition
YJ5$all subclusters that can be reached fromJ along a directed path inG~N,A!%, ~A2!

XI5N2YJ . ~A3!
,
e
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Now I ¹YJ ; otherwiseG(N,A) would contain a directed
cycle. Therefore,I PXI , so (XI ,YJ) is a directed partition in
G(N,A) and (IJ) connects this directed partition. This pa
tition determines a directed partition inGf

max and therefore a
minimum cut inG(N,A) according to Proposition 2. The
(IJ),Amc and because (IJ) is arbitraryAsg,Amc follows.

Proposition 4.Amc is the set of arcs ofG~N,A! that will
be saturated by all the maximal flows~the ‘‘weak’’ links of
the network!.
Proof. We have (i j )PAmc and Gf
max the residual graph

for a maximal flow. By the definition ofAmc there exists a
minimum cut (X,Y) such thati PX and j PY. This mini-
mum cut is a directed cut inGf

max according to Proposition 2
so r i j 50, i.e., the arc (i j ) is saturated. Conversely, let th
arc (i j ) with capacityci j be saturated by all the possib

maximal flows through the network, that is, flows with valu
f 5 f max. Let us assume now that (i j ) is not part of any
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minimum cut. Therefore, if we decrease the capacityci j by a
small valuee.0, ci j→ci j* 5ci j 2e.0, the maximum flow
through the network will still have the valuef max, according
to the Ford-Fulkerson theorem. However, none of the ma
,

i-

mal flows will now ‘‘fit’’ through the network, in particular
through the arc (i j ). This is a contradiction; therefore, th
arc (i j ) must be part of a minimum cut, that is, (i j )
PAmc .
.
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