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Degeneracy algorithm for random magnets
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It has been known for a long time that the ground-state problem of random magnets, e.g., the random field
Ising model, can be mapped onto the maximum flow, minimum cut problem of transportation networks. We
build on this approach, relying on the concept of residual graph, and design an algorithm that we prove to be
exact for finding all the minimum cuts, i.e., the ground-state degeneracy of these systems. We demonstrate that
this algorithm is also relevant for the study of the ground-state properties of the dilute Ising antiferromagnet in
a constant field and interfaces in random bond magh8t063-651X98)07812-X]

PACS numbgs): 02.70—c, 75.10.Hk, 02.60.Pn, 02.10.Eb

I. INTRODUCTION source and the sink, the so-called maximum flow, minimum
cut problem of operations reseaf@+-10]. The advantage of
The statistical physics of random and frustrated systemthis approach is that polynomial time algorithms have been
has received a considerable deal of attention in recent yeaggveloped for this problerf®—11], some of which are much
[1]. The presence of quenched disorder has been found ®@der than the field of random systems.
greatly change the bulk and interface properties of a variety One of the problems that was usually not addressed using
of systems as compared to their “pure” counterparts, leadthese algorithms and an important problem in the physics of
ing to different and very interesting equilibrium and non- random systems is the degeneracy of TheO ground states.
equilibrium phenomena. Unfortunately, the progress ha#n terms of the associated network flow problem this is the
been many times rather slow, primarily because random systuestion of minimum cut degeneracy. An approximate algo-
tems pose sometimes insurmountable theoretical difficultiesthm dealing with this issue was proposed[?] and ap-
even to the most stubborn theorists. Computer simulationplied to the RFIM problem. In this paper | build on the
have played and continue to play an important role in themaximum flow, minimum cut approach, relying strongly on
field, being at times the only guide through a very compli-the concept of residual gragptil], and design an exact algo-
cated energy landscape. While the traditional Monte Carlgithm for finding all the minimum cutgor, equivalently, all
method[2] proved its usefulness again and again, it was sooithe ground states for a certain class of sysjems
realized that other approaches should be considered, depend-The organization of the paper is the following. For the
ing on the nature of the problem at hand. Since then a varietyake of completeness Sec. Il introduces the mapping of the
of algorithms, previously known only within the computer ground-state problem to the maximum flow, minimum cut
science community, have been successfully brought to be@roblem along with the network flow terminology and two
on numerous statistical mechanics problems with quenchegombinatorial results that will be used in the design of the
disorder, from spin glassg$] to rigidity percolation[4].  algorithm. Section Il describes the degeneracy algorithm.
Such algorithms, generally known as combinatorial optimi-Section IV presents a number of applications of the algo-
zation algorithms, have been typically used to find the exactithm. Section V gives a brief conclusion. The Appendix
T=0 ground states of the system being studied, completelincludes the proofs to Propositions 1-4.
avoiding the equilibration problems specific to the Monte
Carlo simulations.
In the following | will focus on a single class of such Il. GROUND STATES USING MAXIMUM FLOW,
algorithms, network flow algorithms, that have been put in MINIMUM CUT ALGORITHMS
the limelight by the work of OgielsKi5], who applied them
to the study of the random field Ising mod&FIM). Since
then the same method was also successfully applied to t

study of equilibrium interfaces in disordered syste@s], . . . .
y 9 yStelB] can extract from this mapping. | will use tAe=0 interface

becoming an important tool for the physicists working in the . . .
g P Py g roblem in the random bond Ising ferromagnet to illustrate

field. The method is generally based upon mapping the sy§’ L ) i
tem being studied onto a network of capacities throughthe method because it is somewhat easier for the unfamiliar

which an incompressible fluid obeying local mass conserval€ader to understand it intuitivelisee also13] for a re-

tion flows. The problem of finding the ground state turns outV'eW)' I :
to be equivalent to finding the maximum flow that can be 1he Hamiltonian of the system is
pushed through the network between two special nodes, the

In the following | will present the mapping of the ground-
mjate problem to the maximum flow, minimum cut problem
and then proceed to describe what kind of information one

. H=-> Jijoioj, D
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whereo;j=*1 andJ;;=0 are ferromagnetic couplings be- from the sources to the sinkt, the minimum cuts are the
tween neighboring spinsl;; are fixed independent identi- bottlenecks of the network of capacities because they deter-
cally distributed random variables: quenched randomness. Hhine the maximum flow that can be pushed through the net-
the system is @-dimensional cube, an interface with dimen- work from sto t. It is useful at this point to put the problem
siond—1 can be induced by using periodic boundary con-in a more general setting. For this a number of definitions are
ditions along thel— 1 directions and setting the spins in the in order.

two (d—1)-dimensional hyperplanes that represent the A transportation networkis a directed graptG.(N,A)
boundaries of the system along the last direction-tb and  with two special nodess the source andthe sink or target;

— 1, respectively. The interface that will form in the systemN is the set of nodes andl the set of arcs. The directed arc
between the+1 and —1 hyperplanes will generally be (ij) going from nodé to j has capacity;;=0. [For the sake
rough because it will wander in order to break the weakesof clarity we assume that if the ar¢j{ exists and has ca-
bonds. The energy is a minimum over all the possible spimpacity ¢;;>0 then (i) also exists and has capacity=0.]
configurationgwith the = 1 boundary spins fixedand there- A flow through the networkG.(N,A) is a set of numbers
fore the problem of finding the minimum energy configura-{f;;}, each corresponding to an arc Ay subject to the fea-
tion(s) would appear to be computationally very hard, evensibility constraints

for small system sizes. As it turns out, this is not the case if

one takes advantage of the similarity between this problem O0=<fjj=<c;; (capacity constraing 5)

and the maximum flow, minimum cut problem, very well

known in the study of transportation networf&-10. The

idea is the following. Two new extra sites are introduced, a €
source nodes that is connected to all the spins of thel

hyperplane and a sink nodeonnected to all the spins of the

—1 hyperplane. The ferromagnetic constants coupling the

source noders and the sink noder; to their corresponding
hyperplane are chosen to be strong enough so they are
broken in the ground state. Then, by setting=+1 and
o= —1 an interface is induced as before. Now we view the
system, includings andt, as a graph whose arcs are the
bonds between the spins. The arcs have forward and bac
ward capacities equal to the corresponding coupling con
stantsc;; =c; =J;; , or we can imagine that the nodieand]
are connected by both forward and backward arcs with ¢
pacitiesc;; andc;;, so this is a directed grapliThe con-
T e e ot o oo o mont 165Ul Gaphas he rapG, (.A) i posiveresiua
can be relaxed for the interface problem, but not for thecapacmesof the arcs,
random field problem.We define the set of nodes Bisand

{ilgh e A} {ildj) e A}

(local flow conservation (6)
nf&r all the nodeg e N—{s,t} and
- eS= et = f ’ (7)

vheref is called the value of the flon(Note that—e;=e,
follows from the flow conservatiof@].) The maximum flow
problemof network flows is concerned with finding the flow
{fij} through the transportation netwofk. that has maxi-
a
mum valuef.
For any feasible flow through the network we define the

a partition (X,Y) of the nodes as rij=Cij — fij+ f;; >0, (8)
X={ieN|oy=+1}, (2 wheref;;—fj; is the net flow fromi to j. (Note thatr;;=0
follows from the capacity constraint and also that it is pos-
Y={ieN|o;=—1}. (3)  sible thatc;;=0 andr;;>0 whenc;;>0.) An augmenting

pathis a directed path frons to t in the residual grapit; .
ThenXUY=N, XNY=(J, se X, andteY. The knowledge A cutis a partition of the nodes sét into two subset

of such a partition determines the energy of the spin configuang v, denoted by X,Y), with se X andteY, such that

ration and the position of the interface. This is readily seen ify v =N andXNY=@. Thecapacity of a cuis defined as
we write the Hamiltonian of the system as

LS c(X,Y)= > Cij - (9)

H=— >  Ji— > J i (i) eAlieX,jeY}

(A A ) ERKY)
In the following | will concentrate on the case of a trans-
:HOJFZ(i ');A:(x Y) Jij (4) portation networkG.(N,A) in which if the arc (j) exists
! ' and has capacity;; >0 then the arcj() also exists and has
where H is the energy of the fully aligned systerhi,  capacityc;;>0. This kind of network is the most relevant
=3 pdij, and we defined A(X)={(i,j)|ieX,jeX}, one in the physics applications that | described before. For
A ={(,j)]lieY,jeY}, and AXY)={(i,))]ieX,]j these networks the following two propositions can be proved
e Y}. Thus the problem of finding the ground-state interface(the proofs are contained in the Appendixvhich can be
which has minimum energy, is equivalent to finding a parti-used to design an algorithm that finds all the minimum cuts
tion (X,Y), also called a cut, that minimize%; ;) c acx,v)Jij » in the networkG.(N,A).
minimum cut(Note thatH, is a constant for a given random  Proposition 1.If {f;;} is a maximal flow and X,Y) a
sample) If we imagine fluid flowing through the network minimum cut therr;;=0 for all arcs{(ij) e Alie X,j e Y}.



7980 S. BASTEA PRE 58

Proposition 2.If f,,,,>>0 a cut X,Y) in G, isa minimum  flow through the network is crucial for finding all the mini-
cut if and only if it is a directed partition iG{"®*, the re- mum cuts. Fortunately, such a calculation can be made with-

sidual graph for a maximal flow. out a major loss of spedd.1].
The calculation of an actual maximal flow through the
network can be done using polynomial time algorithms. The Il. DEGENERACY ALGORITHM

first such algorithm, thaugmenting path algorithif®], was . ) N )
proposed originally by Ford and Fulkerson and it is also a In the following I will use Propositions 1 and 2 to design
way to prove the maximum flow, minimum cut theorésee ~ an algorithm that finds all the minimum cuts. The algorithm
the Appendix. However, much faster algorithms have beenWill be aimed at finding the set of arcgij) e Ali e X,]
developed in recent years, in particular push-relabel methods Y for all minimum cuts ¥,Y)}, denoted hereinafter by
with global updates, that allow one to deal with much biggerAmc. and a procedure for determining the actual minimum
systems than befofd 0]. These algorithms can be and have CUts.

been used in such a way as to improve the computational Let us assume that we constructed a maximal 67"}
speed by providing only the value of the maximal flow and athrough the networkG.(N,A) using an appropriate algo-
minimum cut, but not an actual maximal flow through the rithm and letG]"®* be the associated residual graph. We have
network[11]. However, the knowledge of an actual maximal the definition

Y,={all nodes that can reach the sink along a directed pat@jh”}, (20

Then (X;,Y;) is a minimum cut that we will call thd cut (this follows from Proposition 2 This minimum cut has the
property that for any other minimum cuX(Y), YNY,=Y,. [Proof Let us assum&NY,=Y,#Y,;; thenX;=Y,—Y,;CX.
BecauseX,Y) is a directed cutProposition 2, for any nodé e X there is no directed path froirto the sinkt in G{"®*, which
must also be true for aniye X;. However,X;CY;, so this is a contradictiohWe have also the definition

Xs={all nodes that can be reached from the source along a directed pa@{'i}, (12

Ys=N-—X,. (13

Then (Xs,Y) is also a minimum cut that we call tifecut.  ter labeling procedure, can be readily adapted for the cluster
This minimum cut has the property that for any other mini-counting task and allows such a calculation to be made in a

mum cut X,Y), XNXs=Xs. Now we define time proportional to the number of nodes4rj15]. Figure 2
summarizes our knowledge of the minimum cuts after this
Z=N—Xs—Y;. (14 step. It is easy to see that the number of minimum cuts that

we can construct at this time is"®, wheren(Z) is the

Then if Z= a single minimum cut exists; otherwise there number of independent clusters makingZi®ur search for
are at least two. We will be concerned with the nontrivialthe remaining minimum cuts is then reduced to finding the
caseZ+J.

At this point our knowledge ofd,,, is summarized in Fig.
1. The arrows stand for possibly more than one arc of
G(N,A) and all these arcs are included .. [Note that
these arcs are saturated by the flow, that;is 0, so inG{"®*
only the arcs |i) are present.By the construction oZ we
also know that all the remaining arcs that make 4p.
connect nodes that are included4n

The first part of the algorithm is aimed at finding the
disconnected pieceglusters that make upZ and is there-
fore calledcluster counting A look at Fig. 4, which is an
application of the algorithm to the bimodal RFIM, clarifies
the significance of this step. The idea is to determine the
connectivity of Z in G{"® using as connectivity ruler(
#0 or r;;#0), which is equivalent tog;;#0 or c;;#0.)
This procedure does not reveal any new arcs4gf;, but FIG. 1. Simplified representation of the network after the first
shows how the minimum cuts are constructed using the arcgep of the algorithm, showing tt&cut, theT cut, andZ (we denote
of Apnc that we know at this moment. The well known X, by SandY, by T; see text Note that a directed arc connecting
Hoshen-Kopelman algorithfii4], which is an efficient clus- SandT may or may not exist.
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Scut ©

FIG. 2. Simplified representation of the network after the clus-
ters making upZ have been identified and an example of a mini-
mum cut.

minimum cuts' in each of the independent CIUSteranm_x . FIG. 3. Supergraplg(N,A) at the end of the algorithm and an
=0 the algorithm can be stopped here as everything ig,ample of a minimum cut.
known about the minimum cuts. Any partition of tméZ)
clusters is a minimum cut and the total number of minimumfound at the first step. The connectivity rule that we use is
cuts is 2@, (Note that if f,,,,>0 the “zero” step of the (rij#0 and r;;#0.) Itis clear, using Proposition 1, that the
algorithm should be to find the cluster percolating fremo  subclusters so obtained can only be on one side or the other
t with the above connectivity rule. All the other clusters con-of a minimum cut, i.e., the set,,. is included in the set of
tribute in a trivial manner to the minimum cuts; therefore, inarcs that connect these subclusters to one andtherfor-
the following we assume that they have been already dismally call X; and Y, subclusters In order to eliminate the
carded) overcounting, we apply a third procedure calleabcluster

In the second part of the algorithm we performubclus-  coagulation
ter countingprocedure on each of the independent clusters At the end of the second step of the algorithm the sub-

FIG. 4. (Color) Ground-state structure of the
bimodal RFIM for h/J=3/2. The spins frozen
“up” are green, the spins frozen “down” are
white, and the other colors represent the spins
making upZ; neighboring subclusters have dif-
ferent colors(see the tejt Note thatZ is made
up of independent clusters that contain one or
more subclusters. A dot indicates a field “up”
and the absence of it indicates a field “down.”
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FIG. 5. (Color) Ground-state structure of the
DAFF for h/J=7/2 andp=0.9. The color coding
is the same as for the RFIM, only now black
indicates an empty“nonmagnetic”) site. Note
that in this case “flipping” a(subcluster means
coloring it with one or the other of the checkered
patterns.

SR

clusters are connected with each other possibly through mul-

tiple arcs withr;; =0 andr;;>0. Thesubcluster coagulation

procedure is applied iteratively on each of the independent ® = LI . e ®

clusters and consists of the coagulation of subclusters that

make up a directed cycle. A directed cycle is an ordered

sequence of subcluste;, S,, ...,S,, such that for all

S, k=1,...m, i, jx nodes existj,,jxe S, not neces-

sarily all distinct, with the property thatikjk+1=0 and

rjk+1ik>0' whereS,,.1=S;. The idea is that, according to

Proposition 2, subclusters making up such a directed cycle

cannot be on different parts of a minimum cut; therefore, the

arcs connecting them are not includedAR,. (see also the

discussion following Proposition)4A Hoshen-Kopelman-—

type algorithm, in which the subcluster coagulation is

achieved through relabeling of the subclusters, is again rather

efficient at handling this task, but managing the data struc-

ture requires rather intricate coding. R
At the end of the algorithm we have constructed a super-

graph like the one in Fig. 3, which we denote 8\, A),

with single directed arcs and no cycles. The nodes are now

the subclusters and the arcs stand, as before, for possibly

more than one arc d&(N,A). Formally, the arcI(J) going B R

from the subcluster to subclusted is defined by 3

(13)={(ij)eAliel,jed} (15

and by the construction of the algorithr)=0 andr;;>0 H1
for all arcs {j) e (1J). Then we definedsq=U 4(1J), the
set of arcs ofG(N,A) represented by the arcs g{N,.A).
The following proposition is then trugsee the Appendix for
the prooj. Y

Proposition 3.At the end of the algorithnds,= Apc.

When the algorithm terminated,, is known and, more- FIG. 6. (Colon RFIM cluster from Fig. 4 and its subcluster
over, the problem of counting the minimum cuts is reducedyraph representatiof stands for redy for yellow, andB for blue.
to finding all the directed partitions in a directed, much The associated degeneracy is 7.
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FIG. 7. (Colon Interface con-
figuration for the bond-diluted
Ising model at p=0.64. The
spins frozen up are green, the
spins frozen down are gray, and
the pieces that are not part of the
percolating clustefsee the tejt
are white. The other colors rep-
resent again the spins making up
Z, with neighboring subclusters
having different colors. Note that
for this particular sampleZ is
made up of six independent clus-
ters.

FIG. 8. (Colorn Different
sample from Fig. 7, which has
three independent interfaces,
each with its own excitations.
Note thatZ is in this case a
single cluster in the algorithm
denomination.
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smaller supergrapb(/;.4) with single arcs and no cycles. zero field energy and the same exchange energy in the “up”
Simple enumeration is therefore feasible if the independer@nd “down” states and are located at the boundary of the
clusters are not too big. The degenerdtytal number of frozen domains. The smallest such clusters have only two
minimum cut$ D can be written as spins(see Fig. 4. As a result of this structure theh RFIM
has a strictly positive entropy for a rangetof] and related
D_H dei) (16 with it_ a new order pgrame_ter, the paramagnetic response
4 ' associated with the orientation of the above domains. This
result may be relevant to universality issues that are currently
where d(i) is the degeneracy associated with clusterb€ing debated16,17.
i, d(i)=2. A similar structure is found for the dilute Ising antiferro-
One additional result can be provéthe proof is con- Mmagnetin a constant fiel@AFF) (Fig. 5), which is believed
tained in the Appendix which was also probably known by to be the experimental realization of the RFIM:
Ford and Fulkersof8], that further clarifies the meaning of

Ame-

Proposition 4.4, is the set of arcs o&(N,A) that will Hoarr=J2, €i€joio;—h> €a;. (18)
be saturated by all the maximal flowthe “weak” links of W '
the network.

The above proposition makes it easier to understand intud= 0 ande; are quenched independent random variables and
itively the significance of the subcluster coagulation step of’(€)=p&(&—1)+(1-p)d(e), O<p=1. Detailed re-
the algorithm. It is clear that the flows between subcluster§Ults are reported elsewheles]. o .
are all saturating and also that the flow conservation holds FOr the sake of clarity one of the clusters in Fig. 4 and its
for each subcluster as a unit. Therefore, if for a certain maxiSubcluster graphic representation as given by the algorithm
mal flow we identify a saturating flow cycle between sub-&€ shown in Fig. 6. The connections Xq and Y, are not
clusters, we can reduce the flow around the cycle by it$hown; any directed partition is a minimum cut. Note that the
smallest value between two subclusters making up the cycl@/TOWs separating such a partition point from the up subclus-
while keeping the overall flow maximal. This implies that t€rs to the down subclusters.
none of the arcs making up the cycle is necessarily saturated We also applied the algorithm to the study of the ground-
when the flow is maximal; therefore, according to Proposi-State interfaces in the bond-diluted Ising model. The Hamil-
tion 4, they are not part ofl,,.. Furthermore, because of the fonian is the one in Sec. I, with;; beingJ>0 with prob-
way the subclusters have been constructed, none of the aréBility p and 0 with probability +-p. The ground-state

connecting the subclusters making up the cycle is part oftructure is shown in Fig. 7, with neighboring subclusters
Ame, SO the subclusters can be coagulated. having different colors. These subclusters can be thought of

as the excitations of a single interface, as in Fig. 7, or mul-

tiple interfaces, as in Fig. 8. The size distribution of these

excitations is a power law. Detailed results will be reported
Our interest in designing a degeneracy algorithm arose iglsewherg 19].

connection with our desire to study the ground-state proper-

ties of random magnets. We first used the above algorithm to

study the ground-state structure of the two-dimensianhl

RFIM, which we expected to have a large degeneracy. The In conclusion, we designed an exact algorithm that finds

IV. APPLICATIONS

V. CONCLUSION

Hamiltonian of the RFIM is all the arcs of a flow network that are part of a minimum cut
and allows the effective construction of all the minimum

_ o o cuts. This algorithm is relevant for the study of the ground-

Hrrim= ‘]% 7i9] Z hioi. (17 state properties of the random field Ising model, dilute Ising

antiferromagnet in a field, interface properties of certain

J>0 and theh;'s are independent random variables drawnlsing models with bond or site disorder, and other physical
from a symmetric distributionP(h;), with (h;)=0 and problems that can be mapped onto network flow problems
<hi2>l/2:h' In the case of thech RFIM the h;’s are, with ~ and where the ground state is expected to be degenerate.
equal probability;+ h and—h. This problem is mapped onto  After this work was completed Bruce Hendrickson
the network flow problem by connecting the sites with posi-brought to my attention the work of Ball and Provgz0],
tive fields to the source and the ones with negative fields tavhich contains the idea of constructing an acyclic graph that
the sink through arcs with capacity(see, for examplg13] can be viewed as a compact representation of all minimum
for more details cuts (see alsd21]). The authors also present a polynomial

The structure of a-h RFIM ground state is shown in Fig. algorithm for counting the directed cuts in a planar acyclic
4: two frozen ferromagnetic domains of “up” and “down” graph. It appears that these problems are of continuing inter-
spins and a number of isolated clusters that can be flippe@st for the study of network reliability.
(colored independently of each other to generate new
ground states. There is also a degeneracy associated with
flipping certain groups of subclusters inside a cluster. Sur-
prisingly, domains that can be flipped without changing the | am happy to acknowledge numerous fruitful discussions
energy exist even iR/J is irrational. In this case they have with Phillip M. Duxbury, whom | also thank for unwavering

ACKNOWLEDGMENTS



PRE 58 DEGENERACY ALGORITHM

support. | thank Bruce Hendrickson for providing some rel-

FOR RANDOM MAGNETS 7985

der to prove that X*,Y*) is a minimum cut we have to

evant references. This work was funded by the U.S. DOBprove first that K*,Y*) is a cut, i.,ese X* andte Y*. Let

under Contract No. DE-FG02-90ER45418.

APPENDIX

In the following we present the proofs of the Propositionsthe conservation of the floviE (i}

us assume that this is not true. Then eitligr se Y*, t
eX*, (b) seX*, teX*, or (c) seY*, teY*. We will
show that all these lead to a contradiction.

(@ seY*, te X*. In this case Y*,X*) is a cut and by

enliexx jeyy(Fii—fij)

1-4 that were quoted in the main text. They rely in part on=f__ >0. However, r;=0 implies f;—f;=—c;j, so

the maximum flow, minimum cut theorem of Ford and Fulk-

erson[8,9], probably the most important result in network
flows.

Ford-Fulkerson Theoremln a transportation network
G¢(N,A) the maximum value of over all flows{fj} is
equal to the minimum value(X,Y) over all cuts K,Y).

Proposition 1.If {f;;} is a maximal flow and X,Y) a
minimum cut therr;;=0 for all arcs{(ij) e Alie X,j e Y}.

Proof. Let {f;;} be a maximal flow with value
fmax and (X,Y) a minimum cut. We havef="f
=Z((ij)ealiex,jevy(fij— ;i) by conservation of the floyg]
and alsof ya=Zyijycaliex,jeviCij by the Ford-Fulkerson
theorem. This immediately implieX j)cajiex,jevylij=0
and because;; =0, Proposition 1 follows.

Proposition 2.If 5,0 acut X,Y) in G, is a minimum
cut if and only if it is a directed partition iG{"®*, the re-
sidual graph for a maximal flow.

Definition. A partition (X*,Y*) of the nodes
N, X*UY*=N, X*NY*=¢J, is directed if the arcs con-
nectingX* andY* all have the same direction, for example,
going from Y* to X*, i.e., r;;=0 for all arcs{(ij) e Ali
eX*,jeY*} and J(j*i*)eA, i*eX*, jFeY¥, rjxx
>0.

Proof. If (X,Y) is a minimum cut we have from Proposi-
tion 1r;;=0 for all arcs{(ij) e AlieX,j e Y}. Now if we
also assume;; =0 for all arcs{(ji) e Ali e X,j e Y} this im-
plies c;;=c;;=0 for all arcs{(ij)eA,(ji)eAlieX,jeY}
and further thaff,,,,=0 from the Ford-Fulkerson theorem,
which is a contradiction. Thus the direct implication is
proved.

Conversely, let us now assume thXt“(Y*) is a directed
partition in G, i.e.,r;;=0 for all arcs{(ij) e Ali e X* ]
eY*}Pand3(j*i*)eA, i*eX*, j*eY*, rj%»>0.In or-

YV;={all subclusters that can be reached frahalong a directed path iG(N,.A)},

X=N-

Now | & Y;; otherwiseG(N,.A) would contain a directed
cycle. Thereforel € X}, so (X} ,);) is a directed partition in
G(N,.A) and (J) connects this directed partition. This par-
tition determines a directed partition @f"** and therefore a
minimum cut inG(N,A) according to Proposition 2. Then
(13) CApc and becausely) is arbitrary A C Ap, follows.

Proposition 4.4, is the set of arcs of(N,.A) that will
be saturated by all the maximal flowthe “weak” links of
the network.

Zyijyenliexx,jevap(fji —Fi)) == Zij)jiexx jev+Cij =<0, and
therefore is a contradictiorfln fact, the inequality is strict,
2{(ij)\ieX*,jEY*}Cij>01 becaUSémax>0, andCij andei are
simultaneously zero or strictly positiye.

(b) se X*, te X*. In this case the flow conservation im-
plies that the net flow intoY* must be zero, i.e.,
2{(ij)EA|i e X* eY*}(fij - fj,)=0 TherEfore, 2{(”)5/_\“ e X*,
jevalij=Zipealiex jeyxCij=0 and  Zij)ecajiex*,
jey*}rji :E{(ij)eAH e X* ] eY*}Cji >0. As a resuItEI(ij ) eA
with ¢;; =0 andc; >0, which is a contradiction. Cage) is
similar to (b). From all the above it follows thate X* and
teY*, so X*,Y*) is a cut.

Now we have to prove that{* ,Y*) is also a minimum
cut. We haveXjjycajiex,jevylij=0 and therefore

c(X,Y)=
{(ij)eAlieX,jeY}

Cij

= (A1)
{(ij)eAlieX,jeY}

(fij_fji):fmax

by the conservation of the flow. This implies, according to
the Ford-Fulkerson theorem, thaX,(Y) is a minimum cut.

Proposition 3.At the end of the algorithndg,= Ap,.

Proof. Ay, .C Asq follows from the construction of the al-
gorithm and Propositions 1 and 2. In order to prove
AsqC Anc let us assume, without any loss of generality, that
the supergraph has a single clustewltiple clusters are in-
dependent of each otherLet (1J) be an arc ofG(N,.A)
connecting subclusteidsand J. (We consider only the non-
trivial casel #Y; andJ# X,; if =Y, or J=X; the result
follows immediately from the construction of tigcut andT
cut) We have the definition

(A2)

AR (A3)

Proof. We have {j) € A, and G{"®* the residual graph
for a maximal flow. By the definition of4,,. there exists a
minimum cut (X,Y) such thatie X andjeY. This mini-
mum cut is a directed cut iB]"** according to Proposition 2,
sor;j=0, i.e., the arcif) is saturated. Conversely, let the
arc (ij) with capacityc;; be saturated by all the possible
maximal flows through the network, that is, flows with value
f="fnax Let us assume now thaij( is not part of any
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minimum cut. Therefore, if we decrease the capacityy a
small valuee>0, cij—>ci’} =¢j;—€>0, the maximum flow
through the network will still have the valdg,,,, according

S. BASTEA
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mal flows will now “fit” through the network, in particular
through the arcif). This is a contradiction; therefore, the
arc (ij) must be part of a minimum cut, that isjjJ

to the Ford-Fulkerson theorem. However, none of the maxi€ Ap,..

[1] For a review see, for exampl&pin Glasses and Random [11] A. V. Goldberg and R. E. Tarjan, J. Assoc. Comput. M&%.

Fields edited by A. P. YoungWorld Scientific, Singapore,
1997.

[2] K. Binder and D. W. Heermanrilonte Carlo Simulation in
Statistical Physic$Springer-Verlag, Berlin, 1992

[3] F. Barahona, inPaths, Flows, and VLSI-LayouSpringer-
Verlag, Berlin, 1990

[4] C. Moukarzel and P. M. Duxbury, Phys. Rev. Letb, 4055
(1995.

[5] A. T. Ogielski, Phys. Rev. Letb7, 1251(1986.

[6] A. A. Middleton, Phys. Rev. 52, R3337(1995.

[7] M. J. Alava and P. M. Duxbury, Phys. Rev. 8, 14 990
(1996.

[8] L. R. Ford, Jr. and D. R. FulkersoRJows in NetworkgPrin-
ceton University Press, Princeton, 1962

[9] J. H. van Lint and R. M. WilsonA Course in Combinatorics
(Cambridge University Press, Cambridge, 199Bhap. 7.

[10] A. V. Goldberg, E. Tardos, and R. E. Tarjan,RPaths, Flows,
and VLSI-LayoutRef.[3]).

920(1988.

[12] A. Hartmann, Physica 248 1 (1998.

[13] H. Rieger, inAdvances in Computer Simulatioedited by J.
Kertesz and |. Kondor, Lecture Notes in Physi&pringer-
Verlag, Berlin, 1998

[14] D. Stauffer and A. Aharony,ntroduction to Percolation
Theory(Taylor & Francis, London, 1994 Appendix A.

[15] This is true if the average connectivity of a nodeQ$1) as
n(N)—oo, wheren(N) is the number of nodes iN.

[16] J. C. Angies d’Auriac and N. Sourlas, Europhys. Le30, 473
(1997).

[17] M. R. Swift, A. J. Bray, A. Maritan, M. Cieplak, and J. R.
Banavar, Europhys. Let88, 273(1997).

[18] S. Bastea and P. M. Duxbury, Phys. Rev. 38, 4261
(1998.

[19] S. Bastea and P. M. Duxbuiynpublishegl

[20] M. O. Ball and J. S. Provan, Networlis, 253 (1983.

[21] J. S. Provan and D. R. Shier, Algorithmid&, 351 (1996.



